Decoherence and entropy production in relativistic nuclear collisions
Short thermalization times of less than 1 fm/c for quark and gluon matter have been suggested by recent experiments at the Relativistic Heavy Ion Collider. It has been difficult to justify this rapid thermalization in first-principle calculations based on perturbation theory or the color glass condensate picture. Here, we address the related question of the decoherence of the gluon field, which is a necessary component of thermalization. We present a simplified leading-order computation of the decoherence time of a gluon ensemble subject to an incoming flux of Weizsäcker-Williams gluons. We also discuss the entropy produced during the decoherence process and its relation to the entropy in the final state that has been measured experimentally. © 2009 The American Physical Society.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- Nuclear & Particles Physics
- 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- Nuclear & Particles Physics
- 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics