Molecular staging of lung cancer: real-time polymerase chain reaction estimation of lymph node micrometastatic tumor cell burden in stage I non-small cell lung cancer--preliminary results of Cancer and Leukemia Group B Trial 9761.
OBJECTIVE: The 5-year survival for patients with surgically resected stage I non-small cell lung cancer is only 60% to 70%, probably because of undetected systemic occult micrometastases. Detection of occult micrometastases in lymph nodes by reverse-transcriptase polymerase chain reaction for carcinoembryonic antigen messenger RNA in non-small cell lung cancer has not been reported. Detection of occult micrometastases by standard reverse-transcriptase polymerase chain reaction provides only yes or no answers about their presence, whereas quantitative real-time reverse-transcriptase polymerase chain reaction permits reproducible quantitation of target molecules. This study evaluated the ability of quantitative reverse-transcriptase polymerase chain reaction to quantitate lymph node occult metastases with carcinoembryonic antigen messenger RNA as a tumor marker. METHODS: Standard reverse-transcriptase polymerase chain reaction and quantitative reverse-transcriptase polymerase chain reaction for carcinoembryonic antigen messenger RNA were performed on 232 lymph nodes from 53 patients with stage I disease (node negative according to histologic examination). Quantitative reverse-transcriptase polymerase chain reaction determined carcinoembryonic antigen messenger RNA quantity by detecting fluorescence increase at a threshold polymerase chain reaction cycle. Threshold polymerase chain reaction cycle values were correlated with standard curves created from serially diluted carcinoembryonic antigen-positive HTB-174 tumor cells to estimate the number of micrometastatic tumor cells in a lymph node. RESULTS: Detection rates of occult metastases were similar for standard reverse-transcriptase polymerase chain reaction and quantitative reverse-transcriptase polymerase chain reaction at 38 of 232 (16.4 %) and 59 of 232 (25.4 %), respectively. Upstaging rates among 53 cases of stage I non-small cell lung cancer were also similar for standard reverse-transcriptase polymerase chain reaction and quantitative reverse-transcriptase polymerase chain reaction at 23 of 53 (43.4 %) and 30 of 53 (56.6%), respectively. Comparison of positive lymph node stations according to quantitative reverse-transcriptase polymerase chain reaction (threshold polymerase chain reaction cycle <45) with HTB-174 tumor cell standard curves yielded estimates of metastatic tumor cell burden of 1.07 x 10(3)to 3.24 x 10(5)cells per lymph node station (median 7190 tumor cells per lymph node station). CONCLUSIONS: Standard and quantitative real-time reverse-transcriptase polymerase chain reaction for carcinoembryonic antigen detected occult metastases in patients with stage I non-small cell lung cancer at similar rates; both upstaged about 50% of cases. Quantitative reverse-transcriptase polymerase chain reaction allows estimation of the number of metastatic cells per lymph node, however, which potentially allows greater precision in predicting recurrence risk.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Tumor Cells, Cultured
- Reverse Transcriptase Polymerase Chain Reaction
- Respiratory System
- RNA, Messenger
- Neoplasm Staging
- Lymphatic Metastasis
- Lymph Nodes
- Lung Neoplasms
- Immunohistochemistry
- Humans
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Tumor Cells, Cultured
- Reverse Transcriptase Polymerase Chain Reaction
- Respiratory System
- RNA, Messenger
- Neoplasm Staging
- Lymphatic Metastasis
- Lymph Nodes
- Lung Neoplasms
- Immunohistochemistry
- Humans