Three-dimensional motion measurements using feature tracking.
Feature tracking was developed to efficiently compute motion measurements from volumetric ultrasound images. Prior studies have demonstrated the motion magnitude accuracy and computation speed of feature tracking. However, the previous feature tracking implementations were limited by performance of their calculations in rectilinear coordinates. Also, the previous feature tracking approaches did not fully explore the three dimensional (3- D) nature of volumetric image analysis or utilize the 3-D directional information from the tracking calculations. This study presents an improved feature tracking method which achieves further computation speed gains by performing all calculations in the native spherical coordinates of the 3-D ultrasound image. The novel method utilizes a statistical analysis of tracked directions of motion to achieve better rejection of false tracking matches. Results from in vitro tracking of a speckle target show that the new feature tracking method is significantly faster than correlation search and can accurately determine target motion magnitude and 3-D direction.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Ultrasonography
- Sensitivity and Specificity
- Reproducibility of Results
- Pattern Recognition, Automated
- Movement
- Imaging, Three-Dimensional
- Image Interpretation, Computer-Assisted
- Image Enhancement
- Artificial Intelligence
- Algorithms
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Ultrasonography
- Sensitivity and Specificity
- Reproducibility of Results
- Pattern Recognition, Automated
- Movement
- Imaging, Three-Dimensional
- Image Interpretation, Computer-Assisted
- Image Enhancement
- Artificial Intelligence
- Algorithms