Physical basis for a time series model of soil water content
A first‐order autoregressive Markovian model AR(1) is formulated on the basis of the hydrologic budget and soil water transport equation. The model predictions compared well with neutron probe measurements of soil moisture content, and the statistical moments were conserved. The applied water events were white noise in structure, and the random shocks generated from the flow dynamics simplifications have a statistical mean of zero and were uncorrelated for all time lags. The derived AR(1) model parameter is used to compute the mean diffusivity of the soil, which is in agreement with reported lab measurements and field estimates obtained from cumulative evaporation measurements made with two large lysimeters. Copyright 1992 by the American Geophysical Union.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Environmental Engineering
- 4011 Environmental engineering
- 4005 Civil engineering
- 3707 Hydrology
- 0907 Environmental Engineering
- 0905 Civil Engineering
- 0406 Physical Geography and Environmental Geoscience
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Environmental Engineering
- 4011 Environmental engineering
- 4005 Civil engineering
- 3707 Hydrology
- 0907 Environmental Engineering
- 0905 Civil Engineering
- 0406 Physical Geography and Environmental Geoscience