A note on the flux-variance similarity relationships for heat and water vapour in the unstable atmospheric surface layer
Atmospheric surface layer (ASL) experiments over the past 10 years demonstrate that the flux-variance similarity functions for water vapour are consistently larger in magnitude than their temperature counterpart. In addition, latent heat flux calculations using the flux-variance method do not compare as favorably to eddy-correlation measurements when compared to their sensible heat counterpart. These two findings, in concert with measured heat to water vapour transport efficiencies in excess of unity, are commonly used as evidence of dissimilarity between heat and water vapour transport in the unstable atmospheric surface layer. In this note, it is demonstrated that even if near equality in flux-profile similarity functions for heat and water vapour is satisfied, the flux-variance similarity functions for water vapour are larger in magnitude than temperature for a planar, homogeneous, unstably-stratified, turbulent boundary-layer flow.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Meteorology & Atmospheric Sciences
- 3701 Atmospheric sciences
- 0401 Atmospheric Sciences
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Meteorology & Atmospheric Sciences
- 3701 Atmospheric sciences
- 0401 Atmospheric Sciences