Estimation of in situ hydraulic conductivity function from nonlinear filtering theory
A method based on an optimal nonlinear filtering technique is proposed and tested for the determination of the hydraulic conductivity function from a field drainage experiment. Simplifications to Richards's equation lead to a Langevin type differential equation to describe the redistribution of stored water as a function of drainage flux excited by a random initial condition and state forcing. The derived equation is then utilized in an optimal estimation scheme that explicitly accounts for the formulation and observation uncertainty in determining the hydraulic conductivity parameters. A field drainage experiment was carried out to study the usefulness of the proposed method for routine in situ hydraulic conductivity function estimation. Copyright 1993 by the American Geophysical Union.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Environmental Engineering
- 4011 Environmental engineering
- 4005 Civil engineering
- 3707 Hydrology
- 0907 Environmental Engineering
- 0905 Civil Engineering
- 0406 Physical Geography and Environmental Geoscience
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Environmental Engineering
- 4011 Environmental engineering
- 4005 Civil engineering
- 3707 Hydrology
- 0907 Environmental Engineering
- 0905 Civil Engineering
- 0406 Physical Geography and Environmental Geoscience