Skin temperature perturbations induced by surface layer turbulence above a grass surface
High-frequency (5 Hz) atmospheric surface layer (ASL) turbulent velocity (u') and infrared skin temperature perturbations (T'(s)) were measured above a grass-covered forest clearing and analyzed for cloud free conditions. These measurements were used to investigate mechanisms responsible for the production of large short-lived T'(s) perturbations caused by rapid excursions in u'. To quantify the effects of u' on rapid surface cooling, wavelet spectra of u' and T'(s) and cospectra of u'T'(s) were computed. The u' wavelet power spectra were then analyzed using Townsend's [1961, 1976] hypothesis. Townsend's hypothesis states that ASL eddy motion can be decomposed into an active component, which is a function of the ground shear stress (u*) and height (z) above the zero plane displacement, and an inactive component, which is produced in the atmospheric boundary layer (ABL) outer region. A -1 power law in the u' power spectrum was used as a signature for inactive eddy motion. Therefore the -1 power law was used to identify wavenumber ranges (about 1.5 decades) associated with inactive eddy motion. The measured T'(s) wavelet spectra and u'T'(s) cospectra identified with this wavenumber range demonstrate that much of the T'(s) energy and (u'T'(s)) are due to inactive eddy motion, where the angle brackets indicate time averaging. Hence, in contrast to the laboratory experiments of Owen and Thomson [1963], it is argued that skin temperature perturbations at the canopy-atmosphere interface of a grass-covered surface (small thermal inertia) are strongly dependent on the inactive eddy motion produced in the outer layer of the ABL.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Environmental Engineering
- 4011 Environmental engineering
- 4005 Civil engineering
- 3707 Hydrology
- 0907 Environmental Engineering
- 0905 Civil Engineering
- 0406 Physical Geography and Environmental Geoscience
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Environmental Engineering
- 4011 Environmental engineering
- 4005 Civil engineering
- 3707 Hydrology
- 0907 Environmental Engineering
- 0905 Civil Engineering
- 0406 Physical Geography and Environmental Geoscience