Momentum transfer and turbulent kinetic energy budgets within a dense model canopy
Second-order closure models for the canopy sublayer (CSL) employ a set of closure schemes developed for 'free-air' flow equations and then add extra terms to account for canopy related processes. Much of the current research thrust in CSL closure has focused on these canopy modifications. Instead of offering new closure formulations here, we propose a new mixing length model that accounts for basic energetic modes within the CSL. Detailed flume experiments with cylindrical rods in dense arrays to represent a rigid canopy are conducted to test the closure model. We show that when this length scale model is combined with standard second-order closure schemes, first and second moments, triple velocity correlations, the mean turbulent kinetic energy dissipation rate, and the wake production are all well reproduced within the CSL provided the drag coefficient (C
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Meteorology & Atmospheric Sciences
- 3701 Atmospheric sciences
- 0401 Atmospheric Sciences
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Meteorology & Atmospheric Sciences
- 3701 Atmospheric sciences
- 0401 Atmospheric Sciences