Sensible Heat Flux From Arid Regions: A Simple Flux‐Variance Method
Similarity models in the inner region of the unstable atmospheric boundary layer (ABL) are generally based on four dimensional parameters: buoyancy, friction velocity, surface heat flux, and the height above the land surface. in the free convection limit the friction velocity can be neglected, thus reducing the measurement needs in practical applications. Some field measurements of the second moment of temperature have indicated that free convection scaling of this statistic may be extended into more dynamic regimes, namely, the “dynamic‐convective” and, perhaps, the “dynamic” regions of the ABL. An advantage of this approach is that the sensible heat flux can be estimated without shear stress measurements. This temperature variance similarity model is applied for a wide range of unstably stratified flows over the dry Owens Lake, in southeastern California. The simple free convection model of the temperature variance is accurate for sensible heat flux estimation across the full range of unstable atmospheric stability conditions. Copyright 1995 by the American Geophysical Union.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Environmental Engineering
- 4011 Environmental engineering
- 4005 Civil engineering
- 3707 Hydrology
- 0907 Environmental Engineering
- 0905 Civil Engineering
- 0406 Physical Geography and Environmental Geoscience
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Environmental Engineering
- 4011 Environmental engineering
- 4005 Civil engineering
- 3707 Hydrology
- 0907 Environmental Engineering
- 0905 Civil Engineering
- 0406 Physical Geography and Environmental Geoscience