Skip to main content

Turbulent eddy motion at the forest-atmosphere interface

Publication ,  Journal Article
Katul, G; Hsieh, CI; Kuhn, G; Ellsworth, D; Nie, D
Published in: Journal of Geophysical Research Atmospheres
January 1, 1997

Ejection and sweep eddy motions in the atmospheric surface layer (ASL) are widely accepted as being responsible for much of land surface evaporation, sensible heat flux, and momentum flux; however, less is known about this type of eddy motion within the canopy sublayer (CSL) of forested systems. The present study analyzed the ejectionsweep properties at the canopy-atmosphere interface of a 13 m tall, uniformly aged southern loblolly pine stand and a 33 m tall, unevenly aged hardwood stand using velocity and scalar (temperature, water vapor, and carbon dioxide) fluctuation measurements at the canopy-atmosphere interface. It was found that the measured sweeps and ejections time fractions for scalars and momentum are comparable and are in good agreement with other laboratory and field experiments. This investigation demonstrates that the third-order cumulant expansion method (CEM) reproduces the measured relative flux contribution of ejections and sweeps (ΔS0) and the difference between sweep and Sjection time fractions for both momentum and scalars at the canopy-atmosphere interface in contrast to findings from a previous ASL experiment. A linkage between ΔS0 and the scalar flux budget is derived and tested via the third-order CEM at the canopy-atmosphere interface for the pine and the hardwood stands. It is shown that ΔS0 can be related to the dimensionless scalar flux transport term whose gradient is central to the scalar variance budget. Also, the derived relationship is independent of canopy roughness or scalar sources and sinks. Hence this investigation establishes an analytical linkage between second-order closure models, the ejection-sweep cycle, and third-order CEM at the canopy-atmosphere interface. Dissimilarity between the ejection-sweep cycle for scalar and momentum transport is considered via conditional probability distributions at both forest stands. In contrast to a laboratory heat dispersion experiment, it is shown that while the ejection-sweep cycles for scalar and momentum transport are intimately linked, they are not identical. Therefore the results from momentum ejection-sweeps investigations cannot be extrapolated to scalar transport. Comparisons with other laboratory experiments are also discussed, especially in relation to the scalar ejection and sweep time fractions. Copyright 1997 by the American Geophysical Union.

Duke Scholars

Published In

Journal of Geophysical Research Atmospheres

DOI

ISSN

0148-0227

Publication Date

January 1, 1997

Volume

102

Issue

D12

Start / End Page

13409 / 13421

Related Subject Headings

  • Meteorology & Atmospheric Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Katul, G., Hsieh, C. I., Kuhn, G., Ellsworth, D., & Nie, D. (1997). Turbulent eddy motion at the forest-atmosphere interface. Journal of Geophysical Research Atmospheres, 102(D12), 13409–13421. https://doi.org/10.1029/97JD00777
Katul, G., C. I. Hsieh, G. Kuhn, D. Ellsworth, and D. Nie. “Turbulent eddy motion at the forest-atmosphere interface.” Journal of Geophysical Research Atmospheres 102, no. D12 (January 1, 1997): 13409–21. https://doi.org/10.1029/97JD00777.
Katul G, Hsieh CI, Kuhn G, Ellsworth D, Nie D. Turbulent eddy motion at the forest-atmosphere interface. Journal of Geophysical Research Atmospheres. 1997 Jan 1;102(D12):13409–21.
Katul, G., et al. “Turbulent eddy motion at the forest-atmosphere interface.” Journal of Geophysical Research Atmospheres, vol. 102, no. D12, Jan. 1997, pp. 13409–21. Scopus, doi:10.1029/97JD00777.
Katul G, Hsieh CI, Kuhn G, Ellsworth D, Nie D. Turbulent eddy motion at the forest-atmosphere interface. Journal of Geophysical Research Atmospheres. 1997 Jan 1;102(D12):13409–13421.

Published In

Journal of Geophysical Research Atmospheres

DOI

ISSN

0148-0227

Publication Date

January 1, 1997

Volume

102

Issue

D12

Start / End Page

13409 / 13421

Related Subject Headings

  • Meteorology & Atmospheric Sciences