Generalized inverse mean curvature flows in spacetime
Motivated by the conjectured Penrose inequality and by the work of Hawking, Geroch, Huisken and Ilmanen in the null and the Riemannian case, we examine necessary conditions on flows of two-surfaces in spacetime under which the Hawking quasilocal mass is monotone. We focus on a subclass of such flows which we call uniformly expanding, which can be considered for null as well as for spacelike directions. In the null case, local existence of the flow is guaranteed. In the spacelike case, the uniformly expanding condition leaves a 1-parameter freedom, but for the whole family, the embedding functions satisfy a forward-backward parabolic system for which local existence does not hold in general. Nevertheless, we have obtained a generalization of the weak (distributional) formulation of this class of flows, generalizing the corresponding step of Huisken and Ilmanen's proof of the Riemannian Penrose inequality. © Springer-Verlag 2007.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Mathematical Physics
- 5107 Particle and high energy physics
- 4904 Pure mathematics
- 4902 Mathematical physics
- 0206 Quantum Physics
- 0105 Mathematical Physics
- 0101 Pure Mathematics
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Mathematical Physics
- 5107 Particle and high energy physics
- 4904 Pure mathematics
- 4902 Mathematical physics
- 0206 Quantum Physics
- 0105 Mathematical Physics
- 0101 Pure Mathematics