
The Reconstruction of Upwind Fluxes for Conservation Laws: Its Behavior in Dynamic and Steady State Calculations
The Euler equation of compressible flows is solved by the finite volume method, where high order accuracy is achieved by the reconstruction of each component of upwind fluxes of a flux splitting using the biased averaging procedure. Compared to the solution reconstruction in Godunov-type methods, its implementation is simple and easy, and the computational complexity is relatively low. This approach is parameter-free and requires neither a Riemann solver nor field-by-field decomposition. The numerical results from both dynamic and steady state calculations demonstrate the accuracy and robustness of this approach. Some techniques for the acceleration of the convergence to the steady state are discussed, including multigrid and multistage Runge-Kutta time methods. © 1998 Academic Press.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Applied Mathematics
- 51 Physical sciences
- 49 Mathematical sciences
- 40 Engineering
- 09 Engineering
- 02 Physical Sciences
- 01 Mathematical Sciences
Citation

Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Applied Mathematics
- 51 Physical sciences
- 49 Mathematical sciences
- 40 Engineering
- 09 Engineering
- 02 Physical Sciences
- 01 Mathematical Sciences