Estimates of fire emissions from an active deforestation region in the southern Amazon based on satellite data and biogeochemical modelling
Tropical deforestation contributes to the build-up of atmospheric carbon dioxide in the atmosphere. Within the deforestation process, fire is frequently used to eliminate biomass in preparation for agricultural use. Quantifying these deforestation-induced fire emissions represents a challenge, and current estimates are only available at coarse spatial resolution with large uncertainty. Here we developed a biogeochemical model using remote sensing observations of plant productivity, fire activity, and deforestation rates to estimate emissions for the Brazilian state of Mato Grosso during 2001-2005. Our model of DEforestation CArbon Fluxes (DECAF) runs at 250-m spatial resolution with a monthly time step to capture spatial and temporal heterogeneity in fire dynamics in our study area within the "arc of deforestation", the southern and eastern fringe of the Amazon tropical forest where agricultural expansion is most concentrated. Fire emissions estimates from our modelling framework were on average 90 Tg C year
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Meteorology & Atmospheric Sciences
- 4104 Environmental management
- 3709 Physical geography and environmental geoscience
- 3103 Ecology
- 06 Biological Sciences
- 05 Environmental Sciences
- 04 Earth Sciences
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Meteorology & Atmospheric Sciences
- 4104 Environmental management
- 3709 Physical geography and environmental geoscience
- 3103 Ecology
- 06 Biological Sciences
- 05 Environmental Sciences
- 04 Earth Sciences