Skip to main content
construction release_alert
Scholars@Duke will be undergoing maintenance April 11-15. Some features may be unavailable during this time.
cancel
Journal cover image

Adenosine triphosphate activates ion permeabilities in biliary epithelial cells.

Publication ,  Journal Article
McGill, JM; Basavappa, S; Mangel, AW; Shimokura, GH; Middleton, JP; Fitz, JG
Published in: Gastroenterology
July 1994

BACKGROUND/AIMS: The biliary epithelium contributes to bile formation through absorption and secretion of fluid and electrolytes. The effects of extracellular nucleotides on membrane ion transport were assessed in isolated bile duct cells from rats and Mz-ChA-1 cells from a human cholangiocarcinoma. METHODS: The rates of efflux of 125I and 86Rb were used to assess membrane Cl- and K+ permeabilities, respectively. Patch clamp recordings of whole cell currents were used to evaluate the properties of adenosine triphosphate (ATP)-activated currents. RESULTS: Purinergic receptor agonists ATP and uridine triphosphate stimulated 125I and 86Rb efflux about twofold above basal levels. The effects were reproduced by a nonhydrolyzable analogue of ATP (adenosine 5'-O-[3-thiophosphate]) and were unaffected by an adenosine receptor blocker xanthine amine congener. 125I efflux was also stimulated by adenosine and its receptor agonists 5'-N-ethylcarboxamidoadenosine, N6-(2-phenylisopropyl)adenosine; these effects were inhibited by xanthine amine congener, suggesting a separate adenosine receptor. ATP, adenosine 5'-O-(3-thiophosphate), and uridine triphosphate each stimulated release of Ca2+ from intracellular stores, whereas adenosine had no effect. In whole cell recordings of Mz-ChA-1 cells, ATP activated an early transient outward current consistent with a K+ conductance and a later, sustained inward current consistent with a Cl- conductance. CONCLUSIONS: Biliary cells possess at least two classes of nucleotide receptors that modulate membrane ion permeability through Ca(2+)-dependent and -independent pathways, and ATP may be involved in the regulation of biliary secretion.

Duke Scholars

Published In

Gastroenterology

DOI

ISSN

0016-5085

Publication Date

July 1994

Volume

107

Issue

1

Start / End Page

236 / 243

Location

United States

Related Subject Headings

  • Xanthines
  • Uridine Triphosphate
  • Tumor Cells, Cultured
  • Rubidium Radioisotopes
  • Rats, Sprague-Dawley
  • Rats
  • Potassium
  • Male
  • Ion Transport
  • Iodine Radioisotopes
 

Citation

APA
Chicago
ICMJE
MLA
NLM
McGill, J. M., Basavappa, S., Mangel, A. W., Shimokura, G. H., Middleton, J. P., & Fitz, J. G. (1994). Adenosine triphosphate activates ion permeabilities in biliary epithelial cells. Gastroenterology, 107(1), 236–243. https://doi.org/10.1016/0016-5085(94)90082-5
McGill, J. M., S. Basavappa, A. W. Mangel, G. H. Shimokura, J. P. Middleton, and J. G. Fitz. “Adenosine triphosphate activates ion permeabilities in biliary epithelial cells.Gastroenterology 107, no. 1 (July 1994): 236–43. https://doi.org/10.1016/0016-5085(94)90082-5.
McGill JM, Basavappa S, Mangel AW, Shimokura GH, Middleton JP, Fitz JG. Adenosine triphosphate activates ion permeabilities in biliary epithelial cells. Gastroenterology. 1994 Jul;107(1):236–43.
McGill, J. M., et al. “Adenosine triphosphate activates ion permeabilities in biliary epithelial cells.Gastroenterology, vol. 107, no. 1, July 1994, pp. 236–43. Pubmed, doi:10.1016/0016-5085(94)90082-5.
McGill JM, Basavappa S, Mangel AW, Shimokura GH, Middleton JP, Fitz JG. Adenosine triphosphate activates ion permeabilities in biliary epithelial cells. Gastroenterology. 1994 Jul;107(1):236–243.
Journal cover image

Published In

Gastroenterology

DOI

ISSN

0016-5085

Publication Date

July 1994

Volume

107

Issue

1

Start / End Page

236 / 243

Location

United States

Related Subject Headings

  • Xanthines
  • Uridine Triphosphate
  • Tumor Cells, Cultured
  • Rubidium Radioisotopes
  • Rats, Sprague-Dawley
  • Rats
  • Potassium
  • Male
  • Ion Transport
  • Iodine Radioisotopes