
A flexible direct methanol micro-fuel cell based on a metalized, photosensitive polymer film
This paper presents and investigates a concept for a flexible direct methanol micro-fuel cell (FDMMFC) based on the microstructuring of a Cr/Au metalized, thin polymer film of photosensitive SU-8. The inscribed microchannels in the electrodes are 200 μm × 200 μm in crosssection and spanning an active fuel cell area of 10 mm × 10 mm with a Pt-black catalyst on the cathode side of the membrane electrode assembly (MEA) and a Pt-Ru alloy catalyst on the anode side. Subsequently, the paper focuses on a thorough electrical characterization of the FDMMFC, under the employment of a variable resistor simulating an electrical load as well as a classical galvanostatical measurement technique. The fuel cell is also tested while operating in a bent, non-flat configuration. An extensive parameter study revealed an optimal and long-term stable operating condition for the fuel cell employing for both electrodes a serpentine flow field and a volume flow rate of 0.14 ml min-1 of a 1 M methanol solution at the anode side with a gas volume flow rate of 8 ml min-1 of humidified O
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Energy
- 40 Engineering
- 34 Chemical sciences
- 09 Engineering
- 03 Chemical Sciences
Citation

Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Energy
- 40 Engineering
- 34 Chemical sciences
- 09 Engineering
- 03 Chemical Sciences