Limiting behavior for the distance of a random walk
In this paper we study some aspects of the behavior of random walks on large but finite graphs before they have reached their equilibrium distribution. This investigation is motivated by a result we proved recently for the random transposition random walk: the distance from the starting point of the walk has a phase transition from a linear regime to a sublinear regime at time n/2. Here, we study the examples of random 3-regular graphs, random adjacent transpositions, and riffle shuffles. In the case of a random 3-regular graph, there is a phase transition where the speed changes from 1/3 to 0 at time 3 log
Duke Scholars
Published In
DOI
EISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 0105 Mathematical Physics
- 0104 Statistics
Citation
Published In
DOI
EISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 0105 Mathematical Physics
- 0104 Statistics