The conflicting role of matrix habitats as conduits and barriers for dispersal.
Determining connectivity within complex landscapes is difficult if habitats that facilitate dispersal differ from habitats where animals normally are found or enter. We addressed the question of how landscape features affect dispersal by quantifying two critical aspects of animal movement behavior that determine dispersal rates across complex landscapes: conductivity of major habitat types and behavior at boundaries between habitat types. Our tests consisted of behavioral experiments and observational surveys of a wetland butterfly, Satyrodes appalachia. Displacement rates varied among habitats, with the longest moves and straightest paths leading to greater displacement rate in open habitat and shortest moves and most sinuous paths causing the slowest displacement rate in riparian forest habitat. We found a strong negative relationship between the probability of entering a habitat and the speed of moving through it. Recognizing this central conflict between entering and moving through habitat is important for assessing the connectivity of complex landscapes.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Population Dynamics
- Movement
- Ecosystem
- Ecology
- Butterflies
- Animals
- 4102 Ecological applications
- 3109 Zoology
- 3103 Ecology
- 0603 Evolutionary Biology
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Population Dynamics
- Movement
- Ecosystem
- Ecology
- Butterflies
- Animals
- 4102 Ecological applications
- 3109 Zoology
- 3103 Ecology
- 0603 Evolutionary Biology