Skip to main content

Extreme-angle broadband metamaterial lens.

Publication ,  Journal Article
Kundtz, N; Smith, DR
Published in: Nature materials
February 2010

For centuries, the conventional approach to lens design has been to grind the surfaces of a uniform material in such a manner as to sculpt the paths that rays of light follow as they transit through the interfaces. Refractive lenses formed by this procedure of bending the surfaces can be of extremely high quality, but are nevertheless limited by geometrical and wave aberrations that are inherent to the manner in which light refracts at the interface between two materials. Conceptually, a more natural--but usually less convenient--approach to lens design would be to vary the refractive index throughout an entire volume of space. In this manner, far greater control can be achieved over the ray trajectories. Here, we demonstrate how powerful emerging techniques in the field of transformation optics can be used to harness the flexibility of gradient index materials for imaging applications. In particular we design and experimentally demonstrate a lens that is broadband (more than a full decade bandwidth), has a field-of-view approaching 180 degrees and zero f-number. Measurements on a metamaterial implementation of the lens illustrate the practicality of transformation optics to achieve a new class of optical devices.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Nature materials

DOI

EISSN

1476-4660

ISSN

1476-1122

Publication Date

February 2010

Volume

9

Issue

2

Start / End Page

129 / 132

Related Subject Headings

  • Nanoscience & Nanotechnology
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Kundtz, N., & Smith, D. R. (2010). Extreme-angle broadband metamaterial lens. Nature Materials, 9(2), 129–132. https://doi.org/10.1038/nmat2610
Kundtz, Nathan, and David R. Smith. “Extreme-angle broadband metamaterial lens.Nature Materials 9, no. 2 (February 2010): 129–32. https://doi.org/10.1038/nmat2610.
Kundtz N, Smith DR. Extreme-angle broadband metamaterial lens. Nature materials. 2010 Feb;9(2):129–32.
Kundtz, Nathan, and David R. Smith. “Extreme-angle broadband metamaterial lens.Nature Materials, vol. 9, no. 2, Feb. 2010, pp. 129–32. Epmc, doi:10.1038/nmat2610.
Kundtz N, Smith DR. Extreme-angle broadband metamaterial lens. Nature materials. 2010 Feb;9(2):129–132.

Published In

Nature materials

DOI

EISSN

1476-4660

ISSN

1476-1122

Publication Date

February 2010

Volume

9

Issue

2

Start / End Page

129 / 132

Related Subject Headings

  • Nanoscience & Nanotechnology