A robust semi-analytical method for calculating the response sensitivity of a time delay system
It is often necessary to establish the sensitivity of an engineering system's response to variations in the process/control parameters. Applications of the calculated sensitivity include gradient-based optimization and uncertainty quantification, which generally require an efficient and robust sensitivity calculation method. In this paper, the sensitivity of the milling process, which can be modeled by a set of time delay differential equations, to variations in the input parameters is calculated. The semi-analytical derivative of the maximum eigenvalue provides the necessary information for determining the sensitivity of the process stability to input variables. Comparison with the central finite difference derivative of the stability boundary shows that the semi-analytical approach is more efficient and robust with respect to step size and numerical accuracy of the response. An investigation of the source of inaccuracy of the finite difference approximation found that it is caused by discontinuities associated with the iterative process of root finding using the bisection method. Copyright © 2008 by ASME.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- Acoustics
- 4017 Mechanical engineering
- 4005 Civil engineering
- 0915 Interdisciplinary Engineering
- 0913 Mechanical Engineering
- 0905 Civil Engineering
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- Acoustics
- 4017 Mechanical engineering
- 4005 Civil engineering
- 0915 Interdisciplinary Engineering
- 0913 Mechanical Engineering
- 0905 Civil Engineering