A stochastic compartmental model for fast axonal transport
In this paper we develop a probabilistic micro scale compartmental model and use it to study macroscale properties of axonal transport, the process by which intracellular cargo is moved in the axons of neurons. By directly modeling the smallest scale interactions, we can use recent microscopic experimental observations to infer all the parameters of the model. Then, using techniques from probability theory, we compute asymptotic limits of the stochastic behavior of individual motor-cargo complexes, while also characterizing both equilibrium and nonequilibrium ensemble behavior. We use these results in order to investigate three important biological questions: (1) How homogeneous are axons at stochastic equilibrium? (2) How quickly can axons return to stochastic equilibrium after large local perturbations? (3) How is our understanding of delivery time to a depleted target region changed by taking the whole cell point of view? © 2011 Society for Industrial and Applied Mathematics.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Applied Mathematics
- 4901 Applied mathematics
- 0102 Applied Mathematics
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Applied Mathematics
- 4901 Applied mathematics
- 0102 Applied Mathematics