Mean velocity profile in a sheared and thermally stratified atmospheric boundary layer.
A stability correction function φ(m)(ζ) that accounts for distortions to the logarithmic mean velocity profile (MVP) in the lower atmosphere caused by thermal stratification was proposed by Monin and Obukhov in the 1950s using dimensional analysis. Its universal character was established from many field experiments. However, theories that describe the canonical shape of φ(m)(ζ) are still lacking. A previous link between the spectrum of turbulence and the MVP is expanded here to include the effects of thermal stratification on the turbulent kinetic energy dissipation rate and eddy-size anisotropy. The resulting theory provides a novel explanation for the power-law exponents and coefficients already reported for φ(m)(ζ) from numerous field experiments.
Duke Scholars
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- General Physics
- 51 Physical sciences
- 49 Mathematical sciences
- 40 Engineering
- 09 Engineering
- 02 Physical Sciences
- 01 Mathematical Sciences
Citation
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- General Physics
- 51 Physical sciences
- 49 Mathematical sciences
- 40 Engineering
- 09 Engineering
- 02 Physical Sciences
- 01 Mathematical Sciences