Skip to main content
Journal cover image

Unsteady overland flow on flat surfaces induced by spatial permeability contrasts

Publication ,  Journal Article
Thompson, S; Katul, G; Konings, A; Ridolfi, L
Published in: Advances in Water Resources
August 1, 2011

Lateral redistribution of surface water in patchy arid ecosystems has been hypothesized to contribute to the maintenance of vegetation patches through the provision of a water subsidy from bare sites to vegetated sites. Such runon-runoff processes occur during Hortonian runoff events on topographically sloping ground. Surface flow redistribution may also occur on topographically flat ground if the presence of the vegetation patch creates a contrast in infiltration rate, leading to a free-surface gradient in ponded water. The precise dynamics and the eco-hydrologic role of this process has resisted complete theoretical treatment to date. Here the overland flow equations are modified to account for the presence of vegetation situated over a flat surface. The resulting model is solved numerically to determine whether this mechanism could influence the spatial partitioning of water in patchy arid ecosystems. Assumptions made about infiltration processes and overland flow in existing eco-hydrologic models of patchy and patterned arid ecosystems are evaluated in comparison to the solution of the 'full' coupled Saint-Venant equations with various infiltration models. The results indicate that the optimization of vegetation spatial patch scales with respect to water redistribution may be determined by the size of the infiltration redistribution length L over which the presence of an infiltration contrast perturbs baseline infiltration behavior. © 2011 Elsevier Ltd.

Duke Scholars

Published In

Advances in Water Resources

DOI

ISSN

0309-1708

Publication Date

August 1, 2011

Volume

34

Issue

8

Start / End Page

1049 / 1058

Related Subject Headings

  • Environmental Engineering
  • 4901 Applied mathematics
  • 4005 Civil engineering
  • 3707 Hydrology
  • 0907 Environmental Engineering
  • 0905 Civil Engineering
  • 0102 Applied Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Thompson, S., Katul, G., Konings, A., & Ridolfi, L. (2011). Unsteady overland flow on flat surfaces induced by spatial permeability contrasts. Advances in Water Resources, 34(8), 1049–1058. https://doi.org/10.1016/j.advwatres.2011.05.012
Thompson, S., G. Katul, A. Konings, and L. Ridolfi. “Unsteady overland flow on flat surfaces induced by spatial permeability contrasts.” Advances in Water Resources 34, no. 8 (August 1, 2011): 1049–58. https://doi.org/10.1016/j.advwatres.2011.05.012.
Thompson S, Katul G, Konings A, Ridolfi L. Unsteady overland flow on flat surfaces induced by spatial permeability contrasts. Advances in Water Resources. 2011 Aug 1;34(8):1049–58.
Thompson, S., et al. “Unsteady overland flow on flat surfaces induced by spatial permeability contrasts.” Advances in Water Resources, vol. 34, no. 8, Aug. 2011, pp. 1049–58. Scopus, doi:10.1016/j.advwatres.2011.05.012.
Thompson S, Katul G, Konings A, Ridolfi L. Unsteady overland flow on flat surfaces induced by spatial permeability contrasts. Advances in Water Resources. 2011 Aug 1;34(8):1049–1058.
Journal cover image

Published In

Advances in Water Resources

DOI

ISSN

0309-1708

Publication Date

August 1, 2011

Volume

34

Issue

8

Start / End Page

1049 / 1058

Related Subject Headings

  • Environmental Engineering
  • 4901 Applied mathematics
  • 4005 Civil engineering
  • 3707 Hydrology
  • 0907 Environmental Engineering
  • 0905 Civil Engineering
  • 0102 Applied Mathematics