The Role of Wake Production on the Scaling Laws of Scalar Concentration Fluctuation Spectra Inside Dense Canopies
The scalar concentration fluctuations within a plane parallel-to-the-ground surface were measured inside a model canopy composed of densely arrayed rods using the laser-induced fluorescence technique. Two-dimensional scalar concentration spectra were computed and were shown to exhibit an approximate -3 power-law scaling at wavenumbers larger than those associated with wake production during quiescent instances when von Karman vortex streets dominated the flow. However, during instances when sweeps disrupted the flow, the spectral exponents increased above -3. The -3 power-law for these concentration fluctuation spectra measurements was shown to be consistent with a simplified spectral budget for locally homogeneous and isotropic turbulence augmented with a relaxation time scale similarity argument that assumed a constant enstrophy injection rate and wake generation mechanism. Hence, the origin of this -3 power-law scaling here differs from the well-known -3 power-law result for the so-called inertial diffusive range derived for the scalar concentration spectrum at small Prandtl numbers. © 2010 Springer Science+Business Media B.V.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Meteorology & Atmospheric Sciences
- 3701 Atmospheric sciences
- 0401 Atmospheric Sciences
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Meteorology & Atmospheric Sciences
- 3701 Atmospheric sciences
- 0401 Atmospheric Sciences