Modelling vegetation-atmosphere CO2 exchange by a coupled Eulerian-Langrangian approach
A Eulerian-Lagrangian canopy microclimate model was developed with the aim of discerning physical from biophysical controls of CO2 and H2O fluxes. The model couples radiation attenuation with mass, energy, and momentum exchange at different canopy levels. A unique feature of the model is its ability to combine higher order Eulerian closure approaches that compute velocity statistics with Lagrangian scalar dispersion approaches within the canopy volume. Explicit accounting for within-canopy CO2, H2O, and heat storage is resolved by considering non-steadiness in mean scalar concentration and temperature. A seven-day experiment was conducted in August 1998 to investigate whether the proposed model can reproduce temporal evolution of scalar (CO2, H2O and heat) fluxes, sources and sinks, and concentration profiles within and above a uniform 15-year old pine forest. The model reproduced well the measured depth-averaged canopy surface temperature, and CO2 concentration profiles within the canopy volume, CO2 storage flux, net radiation above the canopy, and heat and mass fluxes above the canopy, as well as the velocity statistics near the canopy-atmosphere interface. Implications for scaling measured leaf-level biophysical functions to ecosystem scale are also discussed.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Meteorology & Atmospheric Sciences
- 3701 Atmospheric sciences
- 0401 Atmospheric Sciences
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Meteorology & Atmospheric Sciences
- 3701 Atmospheric sciences
- 0401 Atmospheric Sciences