Learning multiscale sparse representations for image and video restoration
This paper presents a framework for learning multiscale sparse representations of color images and video with overcomplete dictionaries. A single-scale K-SVD algorithm was introduced in [M. Aharon, M. Elad, and A. M. Bruckstein, IEEE Trans. Signal Process., 54 (2006), pp. 4311-4322], formulating sparse dictionary learning for grayscale image representation as an optimization problem, efficiently solved via orthogonal matching pursuit (OMP) and singular value decomposition (SVD). Following this work, we propose a multiscale learned representation, obtained by using an efficient quadtree decomposition of the learned dictionary and overlapping image patches. The proposed framework provides an alternative to predefined dictionaries such as wavelets and is shown to lead to state-of-the-art results in a number of image and video enhancement and restoration applications. This paper describes the proposed framework and accompanies it by numerous examples demonstrating its strength. © 2008 Society for Industrial and applied Mathematics.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Applied Mathematics
- 4901 Applied mathematics
- 0102 Applied Mathematics
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Applied Mathematics
- 4901 Applied mathematics
- 0102 Applied Mathematics