Skip to main content
Journal cover image

A discourse on Galilean invariance, SUPG stabilization, and the variational multiscale framework

Publication ,  Journal Article
Scovazzi, G
Published in: Computer Methods in Applied Mechanics and Engineering
January 1, 2007

Galilean invariance is one of the key requirements of many physical models adopted in theoretical and computational mechanics. Spurred by recent research developments in shock hydrodynamics computations [G. Scovazzi, Stabilized shock hydrodynamics: II. Design and physical interpretation of the SUPG operator for Lagrangian computations. Comput. Methods Appl. Mech. Engrg., in press, doi:10.1016/j.cma.2006.08.009], a detailed analysis on the principle of Galilean invariance in the context of SUPG operators is presented. It was observed in G. Scovazzi (in press) that lack of Galilean invariance can yield catastrophic instabilities in Lagrangian computations. Here, the analysis develops at a more general level, and an arbitrary Lagrangian-Eulerian (ALE) formulation is used to explain how to consistently derive Galilean invariant SUPG operators. Stabilization operators for Lagrangian and Eulerian mesh computations are obtained as limits of the stabilization operator for the underlying ALE formulation. In the case of Eulerian meshes, it is shown that most of the SUPG operators designed for compressible flow computations to date are not consistent with Galilean invariance. It is stressed that Galilean invariant SUPG formulations can provide consistent advantages in the context of complex engineering applications, due to the simple modifications needed for their implementation. © 2006 Elsevier B.V. All rights reserved.

Duke Scholars

Published In

Computer Methods in Applied Mechanics and Engineering

DOI

ISSN

0045-7825

Publication Date

January 1, 2007

Volume

196

Issue

4-6

Start / End Page

1108 / 1132

Related Subject Headings

  • Applied Mathematics
  • 49 Mathematical sciences
  • 40 Engineering
  • 09 Engineering
  • 01 Mathematical Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Scovazzi, G. (2007). A discourse on Galilean invariance, SUPG stabilization, and the variational multiscale framework. Computer Methods in Applied Mechanics and Engineering, 196(4–6), 1108–1132. https://doi.org/10.1016/j.cma.2006.08.012
Scovazzi, G. “A discourse on Galilean invariance, SUPG stabilization, and the variational multiscale framework.” Computer Methods in Applied Mechanics and Engineering 196, no. 4–6 (January 1, 2007): 1108–32. https://doi.org/10.1016/j.cma.2006.08.012.
Scovazzi G. A discourse on Galilean invariance, SUPG stabilization, and the variational multiscale framework. Computer Methods in Applied Mechanics and Engineering. 2007 Jan 1;196(4–6):1108–32.
Scovazzi, G. “A discourse on Galilean invariance, SUPG stabilization, and the variational multiscale framework.” Computer Methods in Applied Mechanics and Engineering, vol. 196, no. 4–6, Jan. 2007, pp. 1108–32. Scopus, doi:10.1016/j.cma.2006.08.012.
Scovazzi G. A discourse on Galilean invariance, SUPG stabilization, and the variational multiscale framework. Computer Methods in Applied Mechanics and Engineering. 2007 Jan 1;196(4–6):1108–1132.
Journal cover image

Published In

Computer Methods in Applied Mechanics and Engineering

DOI

ISSN

0045-7825

Publication Date

January 1, 2007

Volume

196

Issue

4-6

Start / End Page

1108 / 1132

Related Subject Headings

  • Applied Mathematics
  • 49 Mathematical sciences
  • 40 Engineering
  • 09 Engineering
  • 01 Mathematical Sciences