
A biological survey method applied to seafloor massive sulphides (SMS) with contagiously distributed hydrothermal-vent fauna
Strategies for mitigation of seafloor massive sulphide (SMS) extraction in the deep sea include establishment of suitable reference sites that allow for studies of natural environmental variability and that can serve as sources of larvae for re-colonisation of extracted hydrothermal fields. In this study, we characterize deep-sea vent communities in Manus Basin (Bismarck Sea, Papua New Guinea) and use macrofaunal data sets from a proposed reference site (South Su) and a proposed mine site (Solwara 1) to test the hypothesis that there was no difference in macrofaunal community structure between the sites. We used dispersion weighting to adjust taxa-abundance matrices to down-weight the contribution of contagious distributions of numerically abundant taxa. Faunal assemblages of 3 habitat types defined by biogenic taxa (2 provannid snails, Alviniconcha spp. and Ifremeria nautilei; and a sessile barnacle, Eochionelasmus ohtai) were distinct from one another and from the vent peripheral assemblage, but were not differentiable from mound-to-mound within a site or between sites. Mussel and tubeworm populations at South Su but not at Solwara 1 enhance the taxonomic and habitat diversity of the proposed reference site. © Inter-Research 2012.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- Marine Biology & Hydrobiology
- 4102 Ecological applications
- 3109 Zoology
- 3103 Ecology
- 0608 Zoology
- 0602 Ecology
- 0405 Oceanography
Citation

Published In
DOI
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- Marine Biology & Hydrobiology
- 4102 Ecological applications
- 3109 Zoology
- 3103 Ecology
- 0608 Zoology
- 0602 Ecology
- 0405 Oceanography