Carbon nanotube arrays based high-performance infrared photodetector [Invited]
The carbon nanotubes (CNTs) are an ideal material for infrared applications due to its excellent electronic and optoelectronic properties, suitable bandgap, mechanical and chemical stabilities. In this paper, we demonstrate a photovoltaic infrared detector which is based on aligned single-walled CNT (SWCNT) arrays. The device is fabricated by asymmetrically contacting the two ends of the SWCNT arrays with Pd and Sc of different work functions, which are known to form ohmic contacts with the valence and conduction bands of semiconducting SWCNTs respectively. The device is characterized at room temperature, exhibiting excellent diode characteristics, high responsivity of 9.87 × 10-5 A/W and infrared spectral detectivity of 1.09 × 107 cmHz1/2/W. The demonstration of the SWCNT arrays based infrared detector which is fabricated using a doping-free process paves the way to applications of CNT in such field as high-performance infrared sensors. © 2012 Optical Society of America.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- 5102 Atomic, molecular and optical physics
- 4018 Nanotechnology
- 4009 Electronics, sensors and digital hardware
- 1007 Nanotechnology
- 0205 Optical Physics
Citation
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- 5102 Atomic, molecular and optical physics
- 4018 Nanotechnology
- 4009 Electronics, sensors and digital hardware
- 1007 Nanotechnology
- 0205 Optical Physics