Skip to main content
construction release_alert
The Scholars Team is working with OIT to resolve some issues with the Scholars search index
cancel
Journal cover image

Ab initio numerical simulation of left-handed metamaterials: Comparison of calculations and experiments

Publication ,  Journal Article
Weiland, T; Schuhmann, R; Greegor, RB; Parazzoli, CG; Vetter, AM; Smith, DR; Vier, DC; Schultz, S
Published in: Journal of Applied Physics
November 15, 2001

Using numerical simulation techniques, the transmission and reflection coefficients, or S parameters, for left-handed metamaterials are calculated. Metamaterials consist of a lattice of conducting, nonmagnetic elements that can be described by an effective magnetic permeability μeff and an effective electrical permittivity εeff, both of which can exhibit values not found in naturally occurring materials. Because the electromagnetic fields in conducting metamaterials can be localized to regions much smaller than the incident wavelength, it can be difficult to perform accurate numerical simulations. The metamaterials simulated here, for example, are based on arrays of split ring resonators (SRRs), which produce enhanced and highly localized electric fields within the gaps of the elements in response to applied time dependent fields. To obtain greater numerical accuracy we utilize the newly developed commercially available code MICROWAVE STUDIO, which is based on the finite integration technique with the perfect boundary approximation. The simulation results are in agreement with published experimental results for the frequencies and bandwidths of the propagation and stop bands associated with the various structures. We further analyze the properties of an individual SRR, and find the dependence of the resonant frequency on the SRR radius, ring thickness, inner/outer radial gap, azimuthal gap, electrical permittivity, and magnetic permeability of the components' materials. Comparison with previously published analytical estimates shows only approximate agreement with the simulation results. © 2001 American Institute of Physics.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Journal of Applied Physics

DOI

ISSN

0021-8979

Publication Date

November 15, 2001

Volume

90

Issue

10

Start / End Page

5419 / 5424

Related Subject Headings

  • Applied Physics
  • 51 Physical sciences
  • 49 Mathematical sciences
  • 40 Engineering
  • 09 Engineering
  • 02 Physical Sciences
  • 01 Mathematical Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Weiland, T., Schuhmann, R., Greegor, R. B., Parazzoli, C. G., Vetter, A. M., Smith, D. R., … Schultz, S. (2001). Ab initio numerical simulation of left-handed metamaterials: Comparison of calculations and experiments. Journal of Applied Physics, 90(10), 5419–5424. https://doi.org/10.1063/1.1410881
Weiland, T., R. Schuhmann, R. B. Greegor, C. G. Parazzoli, A. M. Vetter, D. R. Smith, D. C. Vier, and S. Schultz. “Ab initio numerical simulation of left-handed metamaterials: Comparison of calculations and experiments.” Journal of Applied Physics 90, no. 10 (November 15, 2001): 5419–24. https://doi.org/10.1063/1.1410881.
Weiland T, Schuhmann R, Greegor RB, Parazzoli CG, Vetter AM, Smith DR, et al. Ab initio numerical simulation of left-handed metamaterials: Comparison of calculations and experiments. Journal of Applied Physics. 2001 Nov 15;90(10):5419–24.
Weiland, T., et al. “Ab initio numerical simulation of left-handed metamaterials: Comparison of calculations and experiments.” Journal of Applied Physics, vol. 90, no. 10, Nov. 2001, pp. 5419–24. Scopus, doi:10.1063/1.1410881.
Weiland T, Schuhmann R, Greegor RB, Parazzoli CG, Vetter AM, Smith DR, Vier DC, Schultz S. Ab initio numerical simulation of left-handed metamaterials: Comparison of calculations and experiments. Journal of Applied Physics. 2001 Nov 15;90(10):5419–5424.
Journal cover image

Published In

Journal of Applied Physics

DOI

ISSN

0021-8979

Publication Date

November 15, 2001

Volume

90

Issue

10

Start / End Page

5419 / 5424

Related Subject Headings

  • Applied Physics
  • 51 Physical sciences
  • 49 Mathematical sciences
  • 40 Engineering
  • 09 Engineering
  • 02 Physical Sciences
  • 01 Mathematical Sciences