Skip to main content

A heuristic method for identifying chaos from frequency content.

Publication ,  Journal Article
Wiebe, R; Virgin, LN
Published in: Chaos (Woodbury, N.Y.)
March 2012

The sign of the largest Lyapunov exponent is the fundamental indicator of chaos in a dynamical system. However, although the extraction of Lyapunov exponents can be accomplished with (necessarily noisy) the experimental data, this is still a relatively data-intensive and sensitive endeavor. This paper presents an alternative pragmatic approach to identifying chaos using response frequency characteristics and extending the concept of the spectrogram. The method is shown to work well on both experimental and simulated time series.

Duke Scholars

Published In

Chaos (Woodbury, N.Y.)

DOI

EISSN

1089-7682

ISSN

1054-1500

Publication Date

March 2012

Volume

22

Issue

1

Start / End Page

013136

Related Subject Headings

  • Nonlinear Dynamics
  • Fluids & Plasmas
  • Feedback
  • Computer Simulation
  • Algorithms
  • 5199 Other physical sciences
  • 4901 Applied mathematics
  • 0299 Other Physical Sciences
  • 0103 Numerical and Computational Mathematics
  • 0102 Applied Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Wiebe, R., & Virgin, L. N. (2012). A heuristic method for identifying chaos from frequency content. Chaos (Woodbury, N.Y.), 22(1), 013136. https://doi.org/10.1063/1.3675624
Wiebe, R., and L. N. Virgin. “A heuristic method for identifying chaos from frequency content.Chaos (Woodbury, N.Y.) 22, no. 1 (March 2012): 013136. https://doi.org/10.1063/1.3675624.
Wiebe R, Virgin LN. A heuristic method for identifying chaos from frequency content. Chaos (Woodbury, NY). 2012 Mar;22(1):013136.
Wiebe, R., and L. N. Virgin. “A heuristic method for identifying chaos from frequency content.Chaos (Woodbury, N.Y.), vol. 22, no. 1, Mar. 2012, p. 013136. Epmc, doi:10.1063/1.3675624.
Wiebe R, Virgin LN. A heuristic method for identifying chaos from frequency content. Chaos (Woodbury, NY). 2012 Mar;22(1):013136.

Published In

Chaos (Woodbury, N.Y.)

DOI

EISSN

1089-7682

ISSN

1054-1500

Publication Date

March 2012

Volume

22

Issue

1

Start / End Page

013136

Related Subject Headings

  • Nonlinear Dynamics
  • Fluids & Plasmas
  • Feedback
  • Computer Simulation
  • Algorithms
  • 5199 Other physical sciences
  • 4901 Applied mathematics
  • 0299 Other Physical Sciences
  • 0103 Numerical and Computational Mathematics
  • 0102 Applied Mathematics