Searching for the minimum energy path in the sulfuryl transfer reaction catalyzed by human estrogen sulfotransferase: Role of enzyme dynamics
The enzymatic transfer of a sulfuryl group from the ubiquitous biological source of sulfate 3′-phosphoadenosine 5′-phosphosulfate (PAPS) to estrogen is investigated by the pseudo-bond quantum mechanical/molecular mechanical method (QM/MM) method. Calculations of the reaction path are performed starting with models based on two crystal structures, which differ in information about the cofactor and substrates. In addition, a subsequent relaxation of the enzyme was performed with the found transition state frozen, followed by redetermination of the path. An activation barrier of 22 kcal/mol is estimated. The reaction mechanism features a proton transfer from the estrogen to a catalytic histidine followed by the rate determining SO 3 transfer. The mechanism found is largely dissociative. © 2006 Wiley Periodicals, Inc.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Chemical Physics
- 3407 Theoretical and computational chemistry
- 3406 Physical chemistry
- 0307 Theoretical and Computational Chemistry
- 0306 Physical Chemistry (incl. Structural)
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Chemical Physics
- 3407 Theoretical and computational chemistry
- 3406 Physical chemistry
- 0307 Theoretical and Computational Chemistry
- 0306 Physical Chemistry (incl. Structural)