
Nonparametric estimation of structural models for high-frequency currency market data
Empirical modeling of high-frequency currency market data reveals substantial evidence for nonnormality, stochastic volatility, and other nonlinearities. This paper investigates whether an equilibrium monetary model can account for nonlinearities in weekly data. The model incorporates time-nonseparable preferences and a transaction cost technology. Simulated sample paths are generated using Marcet's parameterized expectations procedure. The paper also develops a new method for estimation of structural economic models. The method forces the model to match (under a GMM criterion) the score function of a nonparametric estimate of the conditional density of observed data. The estimation uses weekly U.S.-German currency market data, 1975-90. © 1995.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Econometrics
- 4905 Statistics
- 3802 Econometrics
- 3801 Applied economics
- 1403 Econometrics
- 1402 Applied Economics
- 0104 Statistics
Citation

Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Econometrics
- 4905 Statistics
- 3802 Econometrics
- 3801 Applied economics
- 1403 Econometrics
- 1402 Applied Economics
- 0104 Statistics