Skip to main content
Journal cover image

Interactions between extracellular stimuli and excitation waves in an atrial reentrant loop.

Publication ,  Journal Article
Johnson, CR; Barr, RC
Published in: Journal of cardiovascular electrophysiology
October 2003

Extracellular Stimuli in an Atrial Reentrant Loop.The interactions between extracellular stimuli and excitation waves propagating in a reentrant loop are a complex function of stimulus parameters, structural properties, membrane state, and timing. Here the goal was a comprehensive understanding of the mechanisms and frequencies of the major interactions between the advancing excitation wave and a single extracellular stimulus, separated from issues of anatomic or geometric complexity.A modernized computer model of a thin ring of uniform tissue that included a pair of extracellular stimulus electrodes (anode/cathode) was used to model one-dimensional cardiac reentry. Questions and results included the following: (1) What are the major interactions between a stimulus and the reentrant propagation wave, and are they induced near the cathode or near the anode; and, for each interaction, what are the initiating amplitude range and timing interval? At the cathode, the well-known mechanism of retrograde excitation terminated reentry; changes in timing or amplitude produced double-wave reentry or phase reset. At the anode, termination occurred at different cells depending on stimulus amplitude. (2) Relatively how often did termination occur at the anode? For most stimulus amplitudes, termination occurred more often at the anode than at the cathode, although not always at the same cell. (3) With random timing, what is the probability of terminating reentry? Stimulation for 5 msec terminated reentry with a probability from 0% to approximately 10%, as a function of increasing stimulus amplitude.A single extracellular stimulus can initiate major changes in reentrant excitation via multiple mechanisms, even in a simple geometry. Termination of reentry, phase shifts, or double-wave reentry each occurs over well-defined ranges of stimulus amplitude and timing.

Duke Scholars

Published In

Journal of cardiovascular electrophysiology

DOI

EISSN

1540-8167

ISSN

1045-3873

Publication Date

October 2003

Volume

14

Issue

10

Start / End Page

1064 / 1074

Related Subject Headings

  • Tachycardia, Atrioventricular Nodal Reentry
  • Myocytes, Cardiac
  • Models, Neurological
  • Models, Cardiovascular
  • Humans
  • Heart Conduction System
  • Heart Atria
  • Extracellular Space
  • Electric Stimulation
  • Computer Simulation
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Johnson, C. R., & Barr, R. C. (2003). Interactions between extracellular stimuli and excitation waves in an atrial reentrant loop. Journal of Cardiovascular Electrophysiology, 14(10), 1064–1074. https://doi.org/10.1046/j.1540-8167.2003.02443.x
Johnson, Chad R., and Roger C. Barr. “Interactions between extracellular stimuli and excitation waves in an atrial reentrant loop.Journal of Cardiovascular Electrophysiology 14, no. 10 (October 2003): 1064–74. https://doi.org/10.1046/j.1540-8167.2003.02443.x.
Johnson CR, Barr RC. Interactions between extracellular stimuli and excitation waves in an atrial reentrant loop. Journal of cardiovascular electrophysiology. 2003 Oct;14(10):1064–74.
Johnson, Chad R., and Roger C. Barr. “Interactions between extracellular stimuli and excitation waves in an atrial reentrant loop.Journal of Cardiovascular Electrophysiology, vol. 14, no. 10, Oct. 2003, pp. 1064–74. Epmc, doi:10.1046/j.1540-8167.2003.02443.x.
Johnson CR, Barr RC. Interactions between extracellular stimuli and excitation waves in an atrial reentrant loop. Journal of cardiovascular electrophysiology. 2003 Oct;14(10):1064–1074.
Journal cover image

Published In

Journal of cardiovascular electrophysiology

DOI

EISSN

1540-8167

ISSN

1045-3873

Publication Date

October 2003

Volume

14

Issue

10

Start / End Page

1064 / 1074

Related Subject Headings

  • Tachycardia, Atrioventricular Nodal Reentry
  • Myocytes, Cardiac
  • Models, Neurological
  • Models, Cardiovascular
  • Humans
  • Heart Conduction System
  • Heart Atria
  • Extracellular Space
  • Electric Stimulation
  • Computer Simulation