An efficient re-scaled perceptron algorithm for conic systems
The classical perceptron algorithm is an elementary algorithm for solving a homogeneous linear inequality system Ax > 0, with many important applications in learning theory (e.g., [11,8]). A natural condition measure associated with this algorithm is the Euclidean width T of the cone of feasible solutions, and the iteration complexity of the perceptron algorithm is bounded by 1/τ2. Dunagan and Vempala [5] have developed a re-scaled version of the perceptron algorithm with an improved complexity of O(n ln(1/τ)) iterations (with high probability), which is theoretically efficient in τ, and in particular is polynomial-time in the bit-length model. We explore extensions of the concepts of these perceptron methods to the general homogeneous conic system A
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- Artificial Intelligence & Image Processing
- 46 Information and computing sciences
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- Artificial Intelligence & Image Processing
- 46 Information and computing sciences