Skip to main content
Journal cover image

Natural induction: An objective bayesian approach

Publication ,  Journal Article
Berger, JO; Bernardo, JM; Sun, D
Published in: Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas
January 1, 2009

The statistical analysis of a sample taken from a finite population is a classic problem for which no generally accepted objective Bayesian results seem to exist. Bayesian solutions to this problem may be very sensitive to the choice of the prior, and there is no consensus as to the appropriate prior to use. This paper uses new developments in reference prior theory to justify and generalize Perks (1947) ([15]) 'rule of succession' - determining the probability that a new element from a population will have a property, given that all n previous elements from a random sample possessed the property - and to propose a new objective Bayesian solution to the 'law of natural induction' problem-determining the probability that all elements in a finite population have the property, given that all previous elements had the property. The prior used for the first problem is the reference prior for an underlying hypergeometric probability model, a prior first suggested by Jeffreys (1946) ([10]) and recently justified on the basis of an exchangeability argument in Berger, Bernardo and Sun (2009) ([4]). The reference prior in the second problem arises as a modification to this prior that results from declaring the quantity of interest to be whether or not all the elements in the finite population have the property under scrutiny. © 2009 Real Academia de Ciencias, España.

Duke Scholars

Published In

Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas

DOI

ISSN

1578-7303

Publication Date

January 1, 2009

Volume

103

Issue

1

Start / End Page

125 / 135

Related Subject Headings

  • 4904 Pure mathematics
  • 4903 Numerical and computational mathematics
  • 4901 Applied mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Berger, J. O., Bernardo, J. M., & Sun, D. (2009). Natural induction: An objective bayesian approach. Revista de La Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas, 103(1), 125–135. https://doi.org/10.1007/BF03191839
Berger, J. O., J. M. Bernardo, and D. Sun. “Natural induction: An objective bayesian approach.” Revista de La Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas 103, no. 1 (January 1, 2009): 125–35. https://doi.org/10.1007/BF03191839.
Berger JO, Bernardo JM, Sun D. Natural induction: An objective bayesian approach. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas. 2009 Jan 1;103(1):125–35.
Berger, J. O., et al. “Natural induction: An objective bayesian approach.” Revista de La Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas, vol. 103, no. 1, Jan. 2009, pp. 125–35. Scopus, doi:10.1007/BF03191839.
Berger JO, Bernardo JM, Sun D. Natural induction: An objective bayesian approach. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas. 2009 Jan 1;103(1):125–135.
Journal cover image

Published In

Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas

DOI

ISSN

1578-7303

Publication Date

January 1, 2009

Volume

103

Issue

1

Start / End Page

125 / 135

Related Subject Headings

  • 4904 Pure mathematics
  • 4903 Numerical and computational mathematics
  • 4901 Applied mathematics