Computational simulation of high-speed steady homogeneous two-phase flow in complex piping systems
A study was undertaken to predict steady flow conditions in two-phase steam/water flows in safety/relief discharge piping systems. The homogeneous-equilibrium model was used for the two-phase flow along with the ASME Steam Tables in subroutine form as a state equation. The approach can also accommodate singlephase flows of superheated steam or subcooled liquid. Subroutines were developed to simulate flows through isentropic area changes, abrupt area changes, adiabatic constant area pipes with friction, valves, two-phase shock waves, and mass addition at pipe junctions. These subroutines were combined to predict conditions in arbitrary complex piping systems. Sample calculations which treat both single line and multiple-branch piping systems are included. © 1982 by ASME.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Mechanical Engineering & Transports
- 4017 Mechanical engineering
- 0913 Mechanical Engineering
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Mechanical Engineering & Transports
- 4017 Mechanical engineering
- 0913 Mechanical Engineering