Investigations of the Stillwater Complex: Part V. Apatites as indicators of evolving fluid composition
Variations in the F, Cl and OH contents of apatite are not constrained by crystal-chemical factors (in contrast to micas and amphiboles), and thus changes in the abundance of these components provide an indicator of halogen fugacity variations and insights into the degassing history of igneous rocks. Microprobe analysis of intercumulus apatites from the Stillwater Complex reveal that Cl-rich apatites, typically containing <0.4 wt % F and >6.0 wt % Cl, occur throughout the lower 1/3 of the complex excluding the Basal series. A change from Cl-rich to more F-rich apatite occurs within olivine-bearing zone I (OB I) of the Banded series, the host zone of the platiniferous J-M Reef. Although apatite compositions are somewhat variable above the J-M Reef, more F-rich apatites predominante and typically contain >1.2 wt % F and <3.0 wt % Cl. The most F-rich apatites occur in the uppermost exposed cumulates. Pristine apatites from coeval sills and dikes from below the complex and from the Basal series are similarly F-rich. In all apatites, the Cl and F contents are lower in rocks affected by later metamorphic fluids. Rare earth element (REE) concentrations in chlorapatites show a marked peak in the olivine-rich rocks of the J-M Reef, and contain up to 2 wt % Ce
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Energy
- 4019 Resources engineering and extractive metallurgy
- 3705 Geology
- 3703 Geochemistry
- 0499 Other Earth Sciences
- 0403 Geology
- 0402 Geochemistry
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Energy
- 4019 Resources engineering and extractive metallurgy
- 3705 Geology
- 3703 Geochemistry
- 0499 Other Earth Sciences
- 0403 Geology
- 0402 Geochemistry