Statistical modeling of 3-D parallel-plate embedded capacitors using Monte Carlo simulation
Examination of the statistical variation of integrated passive components is crucial for designing and characterizing the performance of multichip module (MCM) substrates. In this paper, the statistical analysis of parallel plate capacitors with gridded plates manufactured in a multilayer low temperature cofired ceramic (LTCC) process is presented. A set of integrated capacitor structures is fabricated, and their scattering parameters are measured for a range of frequencies from 50 MHz to 5 GHz. Using optimized equivalent circuits obtained from HSPICE, mean and absolute deviation is calculated for each component of each device model. Monte Carlo Analysis for the capacitor structures is then performed using HSPICE. Using a comparison of the Monte Carlo results and measured data, it is determined that even a small number of sample structures, the statistical variation of the component values provides an accurate representation of the overall capacitor performance.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Networking & Telecommunications
- 4009 Electronics, sensors and digital hardware
- 4006 Communications engineering
- 1005 Communications Technologies
- 0906 Electrical and Electronic Engineering
- 0806 Information Systems
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Networking & Telecommunications
- 4009 Electronics, sensors and digital hardware
- 4006 Communications engineering
- 1005 Communications Technologies
- 0906 Electrical and Electronic Engineering
- 0806 Information Systems