Skip to main content

Sparse reconstruction via the reed-muller sieve

Publication ,  Journal Article
Calderbank, R; Howard, S; Jafarpour, S
Published in: IEEE International Symposium on Information Theory - Proceedings
August 23, 2010

This paper introduces the Reed Muller Sieve, a deterministic measurement matrix for compressed sensing. The columns of this matrix are obtained by exponentiating codewords in the quaternary second order Reed Muller code of length N. For k = O(N), the Reed Muller Sieve improves upon prior methods for identifying the support of a k-sparse vector by removing the requirement that the signal entries be independent. The Sieve also enables local detection; an algorithm is presented with complexity N2 log N that detects the presence or absence of a signal at any given position in the data domain without explicitly reconstructing the entire signal. Reconstruction is shown to be resilient to noise in both the measurement and data domains; the ℓ2/ℓ2 error bounds derived in this paper are tighter than the ℓ2/ℓ1 bounds arising from random ensembles and the ℓ1/ℓ1 bounds arising from expander-based ensembles. © 2010 IEEE.

Duke Scholars

Published In

IEEE International Symposium on Information Theory - Proceedings

DOI

Publication Date

August 23, 2010

Start / End Page

1973 / 1977
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Calderbank, R., Howard, S., & Jafarpour, S. (2010). Sparse reconstruction via the reed-muller sieve. IEEE International Symposium on Information Theory - Proceedings, 1973–1977. https://doi.org/10.1109/ISIT.2010.5513361
Calderbank, R., S. Howard, and S. Jafarpour. “Sparse reconstruction via the reed-muller sieve.” IEEE International Symposium on Information Theory - Proceedings, August 23, 2010, 1973–77. https://doi.org/10.1109/ISIT.2010.5513361.
Calderbank R, Howard S, Jafarpour S. Sparse reconstruction via the reed-muller sieve. IEEE International Symposium on Information Theory - Proceedings. 2010 Aug 23;1973–7.
Calderbank, R., et al. “Sparse reconstruction via the reed-muller sieve.” IEEE International Symposium on Information Theory - Proceedings, Aug. 2010, pp. 1973–77. Scopus, doi:10.1109/ISIT.2010.5513361.
Calderbank R, Howard S, Jafarpour S. Sparse reconstruction via the reed-muller sieve. IEEE International Symposium on Information Theory - Proceedings. 2010 Aug 23;1973–1977.

Published In

IEEE International Symposium on Information Theory - Proceedings

DOI

Publication Date

August 23, 2010

Start / End Page

1973 / 1977