Analysis of boosting algorithms using the smooth margin function
We introduce a useful tool for analyzing boosting algorithms called the "smooth margin function," a differentiable approximation of the usual margin for boosting algorithms. We present two boosting algorithms based on this smooth margin, "coordinate ascent boosting" and "approximate coordinate ascent boosting," which are similar to Freund and Schapire's AdaBoost algorithm and Breiman's arc-gv algorithm. We give convergence rates to the maximum margin solution for both of our algorithms and for arc-gv. We then study AdaBoost's convergence properties using the smooth margin function. We precisely bound the margin attained by AdaBoost when the edges of the weak classifiers fall within a specified range. This shows that a previous bound proved by Ratsch and Warmuth is exactly tight. Furthermore, we use the smooth margin to capture explicit properties of AdaBoost in cases where cyclic behavior occurs. © Institute of Mathematical Statistics, 2007.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 3802 Econometrics
- 1403 Econometrics
- 0104 Statistics
- 0102 Applied Mathematics
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 3802 Econometrics
- 1403 Econometrics
- 0104 Statistics
- 0102 Applied Mathematics