Skip to main content
Journal cover image

Theoretical and experimental analysis of a randomized algorithm for Sparse Fourier transform analysis

Publication ,  Journal Article
Zou, J; Gilbert, A; Strauss, M; Daubechies, I
Published in: Journal of Computational Physics
January 20, 2006

We analyze a sublinear RAℓSFA (randomized algorithm for Sparse Fourier analysis) that finds a near-optimal B-term Sparse representation R for a given discrete signal S of length N, in time and space poly (B, log(N)), following the approach given in [A.C. Gilbert, S. Guha, P. Indyk, S. Muthukrishnan, M. Strauss, Near-Optimal Sparse Fourier Representations via Sampling, STOC, 2002]. Its time cost poly (log(N)) should be compared with the superlinear Ω(N log N) time requirement of the Fast Fourier Transform (FFT). A straightforward implementation of the RAℓSFA, as presented in the theoretical paper [A.C. Gilbert, S. Guha, P. Indyk, S. Muthukrishnan, M. Strauss, Near-Optimal Sparse Fourier Representations via Sampling, STOC, 2002], turns out to be very slow in practice. Our main result is a greatly improved and practical RAℓSFA. We introduce several new ideas and techniques that speed up the algorithm. Both rigorous and heuristic arguments for parameter choices are presented. Our RAℓSFA constructs, with probability at least 1 - δ, a near-optimal B-term representation R in time poly(B) log(N) log(1/δ)/ε2 log(M) such that ∥S - R∥22 ≤ (1 + ε) ∥S - Ropt∥22. Furthermore, this RAℓSFA implementation already beats the FFTW for not unreasonably large N. We extend the algorithm to higher dimensional cases both theoretically and numerically. The crossover point lies at N ≃ 70, 000 in one dimension, and at N ≃ 900 for data on a N × N grid in two dimensions for small B signals where there is noise. © 2005 Elsevier Inc. All rights reserved.

Duke Scholars

Published In

Journal of Computational Physics

DOI

EISSN

1090-2716

ISSN

0021-9991

Publication Date

January 20, 2006

Volume

211

Issue

2

Start / End Page

572 / 595

Related Subject Headings

  • Applied Mathematics
  • 51 Physical sciences
  • 49 Mathematical sciences
  • 40 Engineering
  • 09 Engineering
  • 02 Physical Sciences
  • 01 Mathematical Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Zou, J., Gilbert, A., Strauss, M., & Daubechies, I. (2006). Theoretical and experimental analysis of a randomized algorithm for Sparse Fourier transform analysis. Journal of Computational Physics, 211(2), 572–595. https://doi.org/10.1016/j.jcp.2005.06.005
Zou, J., A. Gilbert, M. Strauss, and I. Daubechies. “Theoretical and experimental analysis of a randomized algorithm for Sparse Fourier transform analysis.” Journal of Computational Physics 211, no. 2 (January 20, 2006): 572–95. https://doi.org/10.1016/j.jcp.2005.06.005.
Zou J, Gilbert A, Strauss M, Daubechies I. Theoretical and experimental analysis of a randomized algorithm for Sparse Fourier transform analysis. Journal of Computational Physics. 2006 Jan 20;211(2):572–95.
Zou, J., et al. “Theoretical and experimental analysis of a randomized algorithm for Sparse Fourier transform analysis.” Journal of Computational Physics, vol. 211, no. 2, Jan. 2006, pp. 572–95. Scopus, doi:10.1016/j.jcp.2005.06.005.
Zou J, Gilbert A, Strauss M, Daubechies I. Theoretical and experimental analysis of a randomized algorithm for Sparse Fourier transform analysis. Journal of Computational Physics. 2006 Jan 20;211(2):572–595.
Journal cover image

Published In

Journal of Computational Physics

DOI

EISSN

1090-2716

ISSN

0021-9991

Publication Date

January 20, 2006

Volume

211

Issue

2

Start / End Page

572 / 595

Related Subject Headings

  • Applied Mathematics
  • 51 Physical sciences
  • 49 Mathematical sciences
  • 40 Engineering
  • 09 Engineering
  • 02 Physical Sciences
  • 01 Mathematical Sciences