An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
We consider linear inverse problems where the solution is assumed to have a sparse expansion on an arbitrary preassigned orthonormal basis. We prove that replacing the usual quadratic regularizing penalties by weighted of ℓP - penalties on the coefficients of such expansions, with 1 ≤ p ≤ 2, still regularizes the problem. Use of such ℓP- penalized problems with p < 2 is often advocated when one expects the underlying ideal noiseless solution to have a sparse expansion with respect to the basis under consideration. To compute the corresponding regularized solutions, we analyze an iterative algorithm that amounts to a Landweber iteration with thresholding (or nonlinear shrinkage) applied at each iteration step. We prove that this algorithm converges in norm. © 2004 Wiley Periodicals, Inc.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics