The canonical dual frame of a wavelet frame
Publication
, Journal Article
Daubechies, I; Han, B
Published in: Applied and Computational Harmonic Analysis
May 1, 2002
In this paper we show that there exist wavelet frames that have nice dual wavelet frames, but for which the canonical dual frame does not consist of wavelets, i.e., cannot be generated by the translates and dilates of a single function. © 2002 Elsevier Science (USA).
Duke Scholars
Published In
Applied and Computational Harmonic Analysis
DOI
ISSN
1063-5203
Publication Date
May 1, 2002
Volume
12
Issue
3
Start / End Page
269 / 285
Related Subject Headings
- Numerical & Computational Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0103 Numerical and Computational Mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Daubechies, I., & Han, B. (2002). The canonical dual frame of a wavelet frame. Applied and Computational Harmonic Analysis, 12(3), 269–285. https://doi.org/10.1006/acha.2002.0381
Daubechies, I., and B. Han. “The canonical dual frame of a wavelet frame.” Applied and Computational Harmonic Analysis 12, no. 3 (May 1, 2002): 269–85. https://doi.org/10.1006/acha.2002.0381.
Daubechies I, Han B. The canonical dual frame of a wavelet frame. Applied and Computational Harmonic Analysis. 2002 May 1;12(3):269–85.
Daubechies, I., and B. Han. “The canonical dual frame of a wavelet frame.” Applied and Computational Harmonic Analysis, vol. 12, no. 3, May 2002, pp. 269–85. Scopus, doi:10.1006/acha.2002.0381.
Daubechies I, Han B. The canonical dual frame of a wavelet frame. Applied and Computational Harmonic Analysis. 2002 May 1;12(3):269–285.
Published In
Applied and Computational Harmonic Analysis
DOI
ISSN
1063-5203
Publication Date
May 1, 2002
Volume
12
Issue
3
Start / End Page
269 / 285
Related Subject Headings
- Numerical & Computational Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0103 Numerical and Computational Mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics