Skip to main content
Journal cover image

The canonical dual frame of a wavelet frame

Publication ,  Journal Article
Daubechies, I; Han, B
Published in: Applied and Computational Harmonic Analysis
May 1, 2002

In this paper we show that there exist wavelet frames that have nice dual wavelet frames, but for which the canonical dual frame does not consist of wavelets, i.e., cannot be generated by the translates and dilates of a single function. © 2002 Elsevier Science (USA).

Duke Scholars

Published In

Applied and Computational Harmonic Analysis

DOI

ISSN

1063-5203

Publication Date

May 1, 2002

Volume

12

Issue

3

Start / End Page

269 / 285

Related Subject Headings

  • Numerical & Computational Mathematics
  • 4904 Pure mathematics
  • 4901 Applied mathematics
  • 0103 Numerical and Computational Mathematics
  • 0102 Applied Mathematics
  • 0101 Pure Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Daubechies, I., & Han, B. (2002). The canonical dual frame of a wavelet frame. Applied and Computational Harmonic Analysis, 12(3), 269–285. https://doi.org/10.1006/acha.2002.0381
Daubechies, I., and B. Han. “The canonical dual frame of a wavelet frame.” Applied and Computational Harmonic Analysis 12, no. 3 (May 1, 2002): 269–85. https://doi.org/10.1006/acha.2002.0381.
Daubechies I, Han B. The canonical dual frame of a wavelet frame. Applied and Computational Harmonic Analysis. 2002 May 1;12(3):269–85.
Daubechies, I., and B. Han. “The canonical dual frame of a wavelet frame.” Applied and Computational Harmonic Analysis, vol. 12, no. 3, May 2002, pp. 269–85. Scopus, doi:10.1006/acha.2002.0381.
Daubechies I, Han B. The canonical dual frame of a wavelet frame. Applied and Computational Harmonic Analysis. 2002 May 1;12(3):269–285.
Journal cover image

Published In

Applied and Computational Harmonic Analysis

DOI

ISSN

1063-5203

Publication Date

May 1, 2002

Volume

12

Issue

3

Start / End Page

269 / 285

Related Subject Headings

  • Numerical & Computational Mathematics
  • 4904 Pure mathematics
  • 4901 Applied mathematics
  • 0103 Numerical and Computational Mathematics
  • 0102 Applied Mathematics
  • 0101 Pure Mathematics