How smooth is the smoothest function in a given refinable space?
Publication
, Journal Article
Cohen, A; Daubechies, I; Ron, A
Published in: Applied and Computational Harmonic Analysis
January 1, 1996
Duke Scholars
Published In
Applied and Computational Harmonic Analysis
DOI
ISSN
1063-5203
Publication Date
January 1, 1996
Volume
3
Issue
1
Start / End Page
87 / 89
Related Subject Headings
- Numerical & Computational Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0103 Numerical and Computational Mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Cohen, A., Daubechies, I., & Ron, A. (1996). How smooth is the smoothest function in a given refinable space? Applied and Computational Harmonic Analysis, 3(1), 87–89. https://doi.org/10.1006/acha.1996.0008
Cohen, A., I. Daubechies, and A. Ron. “How smooth is the smoothest function in a given refinable space?” Applied and Computational Harmonic Analysis 3, no. 1 (January 1, 1996): 87–89. https://doi.org/10.1006/acha.1996.0008.
Cohen A, Daubechies I, Ron A. How smooth is the smoothest function in a given refinable space? Applied and Computational Harmonic Analysis. 1996 Jan 1;3(1):87–9.
Cohen, A., et al. “How smooth is the smoothest function in a given refinable space?” Applied and Computational Harmonic Analysis, vol. 3, no. 1, Jan. 1996, pp. 87–89. Scopus, doi:10.1006/acha.1996.0008.
Cohen A, Daubechies I, Ron A. How smooth is the smoothest function in a given refinable space? Applied and Computational Harmonic Analysis. 1996 Jan 1;3(1):87–89.
Published In
Applied and Computational Harmonic Analysis
DOI
ISSN
1063-5203
Publication Date
January 1, 1996
Volume
3
Issue
1
Start / End Page
87 / 89
Related Subject Headings
- Numerical & Computational Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0103 Numerical and Computational Mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics