## Wiener measures for path integrals with affine kinematic variables

Publication
, Journal Article

Daubechies, I; Klauder, JR; Paul, T

Published in: Journal of Mathematical Physics

January 1, 1987

The results obtained earlier have been generalized to show that the path integral for the affine coherent state matrix element of a unitary evolution operator exp(-iTH) can be written as a well-defined Wiener integral, involving Wiener measure on the Lobachevsky half-plane, in the limit that the diffusion constant diverges. This approach works for a wide class of Hamiltonians, including, e.g., -d2/dx2 + V(x) on L2(ℝ +), with V sufficiently singular at x = 0. © 1987 American Institute of Physics.

### Duke Scholars

## Published In

Journal of Mathematical Physics

## DOI

## ISSN

0022-2488

## Publication Date

January 1, 1987

## Volume

28

## Issue

1

## Start / End Page

85 / 102

## Related Subject Headings

- Mathematical Physics
- 51 Physical sciences
- 49 Mathematical sciences
- 02 Physical Sciences
- 01 Mathematical Sciences

### Citation

APA

Chicago

ICMJE

MLA

NLM

Daubechies, I., Klauder, J. R., & Paul, T. (1987). Wiener measures for path integrals with affine kinematic variables.

*Journal of Mathematical Physics*,*28*(1), 85–102. https://doi.org/10.1063/1.527812Daubechies, I., J. R. Klauder, and T. Paul. “Wiener measures for path integrals with affine kinematic variables.”

*Journal of Mathematical Physics*28, no. 1 (January 1, 1987): 85–102. https://doi.org/10.1063/1.527812.Daubechies I, Klauder JR, Paul T. Wiener measures for path integrals with affine kinematic variables. Journal of Mathematical Physics. 1987 Jan 1;28(1):85–102.

Daubechies, I., et al. “Wiener measures for path integrals with affine kinematic variables.”

*Journal of Mathematical Physics*, vol. 28, no. 1, Jan. 1987, pp. 85–102.*Scopus*, doi:10.1063/1.527812.Daubechies I, Klauder JR, Paul T. Wiener measures for path integrals with affine kinematic variables. Journal of Mathematical Physics. 1987 Jan 1;28(1):85–102.

## Published In

Journal of Mathematical Physics

## DOI

## ISSN

0022-2488

## Publication Date

January 1, 1987

## Volume

28

## Issue

1

## Start / End Page

85 / 102

## Related Subject Headings

- Mathematical Physics
- 51 Physical sciences
- 49 Mathematical sciences
- 02 Physical Sciences
- 01 Mathematical Sciences