An uncertainty principle for fermions with generalized kinetic energy
Publication
, Journal Article
Daubechies, I
Published in: Communications in Mathematical Physics
December 1, 1983
We derive semiclassical upper bounds for the number of bound states and the sum of negative eigenvalues of the one-particle Hamiltonians h=f(-i∇)+V(x) acting on L2(ℝn). These bounds are then used to derive a lower bound on the kinetic energy {Mathematical expression} for an N-fermion wavefunction ψ. We discuss two examples in more detail:f(p)=|p| and f(p)=(p2+m2)1/2-m, both in three dimensions. © 1983 Springer-Verlag.
Duke Scholars
Published In
Communications in Mathematical Physics
DOI
EISSN
1432-0916
ISSN
0010-3616
Publication Date
December 1, 1983
Volume
90
Issue
4
Start / End Page
511 / 520
Related Subject Headings
- Mathematical Physics
- 5107 Particle and high energy physics
- 4904 Pure mathematics
- 4902 Mathematical physics
- 0206 Quantum Physics
- 0105 Mathematical Physics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Daubechies, I. (1983). An uncertainty principle for fermions with generalized kinetic energy. Communications in Mathematical Physics, 90(4), 511–520. https://doi.org/10.1007/BF01216182
Daubechies, I. “An uncertainty principle for fermions with generalized kinetic energy.” Communications in Mathematical Physics 90, no. 4 (December 1, 1983): 511–20. https://doi.org/10.1007/BF01216182.
Daubechies I. An uncertainty principle for fermions with generalized kinetic energy. Communications in Mathematical Physics. 1983 Dec 1;90(4):511–20.
Daubechies, I. “An uncertainty principle for fermions with generalized kinetic energy.” Communications in Mathematical Physics, vol. 90, no. 4, Dec. 1983, pp. 511–20. Scopus, doi:10.1007/BF01216182.
Daubechies I. An uncertainty principle for fermions with generalized kinetic energy. Communications in Mathematical Physics. 1983 Dec 1;90(4):511–520.
Published In
Communications in Mathematical Physics
DOI
EISSN
1432-0916
ISSN
0010-3616
Publication Date
December 1, 1983
Volume
90
Issue
4
Start / End Page
511 / 520
Related Subject Headings
- Mathematical Physics
- 5107 Particle and high energy physics
- 4904 Pure mathematics
- 4902 Mathematical physics
- 0206 Quantum Physics
- 0105 Mathematical Physics
- 0101 Pure Mathematics