Skip to main content
Journal cover image

An uncertainty principle for fermions with generalized kinetic energy

Publication ,  Journal Article
Daubechies, I
Published in: Communications in Mathematical Physics
December 1, 1983

We derive semiclassical upper bounds for the number of bound states and the sum of negative eigenvalues of the one-particle Hamiltonians h=f(-i∇)+V(x) acting on L2(ℝn). These bounds are then used to derive a lower bound on the kinetic energy {Mathematical expression} for an N-fermion wavefunction ψ. We discuss two examples in more detail:f(p)=|p| and f(p)=(p2+m2)1/2-m, both in three dimensions. © 1983 Springer-Verlag.

Duke Scholars

Published In

Communications in Mathematical Physics

DOI

EISSN

1432-0916

ISSN

0010-3616

Publication Date

December 1, 1983

Volume

90

Issue

4

Start / End Page

511 / 520

Related Subject Headings

  • Mathematical Physics
  • 5107 Particle and high energy physics
  • 4904 Pure mathematics
  • 4902 Mathematical physics
  • 0206 Quantum Physics
  • 0105 Mathematical Physics
  • 0101 Pure Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Daubechies, I. (1983). An uncertainty principle for fermions with generalized kinetic energy. Communications in Mathematical Physics, 90(4), 511–520. https://doi.org/10.1007/BF01216182
Daubechies, I. “An uncertainty principle for fermions with generalized kinetic energy.” Communications in Mathematical Physics 90, no. 4 (December 1, 1983): 511–20. https://doi.org/10.1007/BF01216182.
Daubechies I. An uncertainty principle for fermions with generalized kinetic energy. Communications in Mathematical Physics. 1983 Dec 1;90(4):511–20.
Daubechies, I. “An uncertainty principle for fermions with generalized kinetic energy.” Communications in Mathematical Physics, vol. 90, no. 4, Dec. 1983, pp. 511–20. Scopus, doi:10.1007/BF01216182.
Daubechies I. An uncertainty principle for fermions with generalized kinetic energy. Communications in Mathematical Physics. 1983 Dec 1;90(4):511–520.
Journal cover image

Published In

Communications in Mathematical Physics

DOI

EISSN

1432-0916

ISSN

0010-3616

Publication Date

December 1, 1983

Volume

90

Issue

4

Start / End Page

511 / 520

Related Subject Headings

  • Mathematical Physics
  • 5107 Particle and high energy physics
  • 4904 Pure mathematics
  • 4902 Mathematical physics
  • 0206 Quantum Physics
  • 0105 Mathematical Physics
  • 0101 Pure Mathematics