## An uncertainty principle for fermions with generalized kinetic energy

Publication
, Journal Article

Daubechies, I

Published in: Communications in Mathematical Physics

December 1, 1983

We derive semiclassical upper bounds for the number of bound states and the sum of negative eigenvalues of the one-particle Hamiltonians h=f(-i∇)+V(x) acting on L2(ℝn). These bounds are then used to derive a lower bound on the kinetic energy {Mathematical expression} for an N-fermion wavefunction ψ. We discuss two examples in more detail:f(p)=|p| and f(p)=(p2+m2)1/2-m, both in three dimensions. © 1983 Springer-Verlag.

### Duke Scholars

## Published In

Communications in Mathematical Physics

## DOI

## EISSN

1432-0916

## ISSN

0010-3616

## Publication Date

December 1, 1983

## Volume

90

## Issue

4

## Start / End Page

511 / 520

## Related Subject Headings

- Mathematical Physics
- 5107 Particle and high energy physics
- 4904 Pure mathematics
- 4902 Mathematical physics
- 0206 Quantum Physics
- 0105 Mathematical Physics
- 0101 Pure Mathematics

### Citation

APA

Chicago

ICMJE

MLA

NLM

Daubechies, I. (1983). An uncertainty principle for fermions with generalized kinetic energy.

*Communications in Mathematical Physics*,*90*(4), 511–520. https://doi.org/10.1007/BF01216182Daubechies, I. “An uncertainty principle for fermions with generalized kinetic energy.”

*Communications in Mathematical Physics*90, no. 4 (December 1, 1983): 511–20. https://doi.org/10.1007/BF01216182.Daubechies I. An uncertainty principle for fermions with generalized kinetic energy. Communications in Mathematical Physics. 1983 Dec 1;90(4):511–20.

Daubechies, I. “An uncertainty principle for fermions with generalized kinetic energy.”

*Communications in Mathematical Physics*, vol. 90, no. 4, Dec. 1983, pp. 511–20.*Scopus*, doi:10.1007/BF01216182.Daubechies I. An uncertainty principle for fermions with generalized kinetic energy. Communications in Mathematical Physics. 1983 Dec 1;90(4):511–520.

## Published In

Communications in Mathematical Physics

## DOI

## EISSN

1432-0916

## ISSN

0010-3616

## Publication Date

December 1, 1983

## Volume

90

## Issue

4

## Start / End Page

511 / 520

## Related Subject Headings

- Mathematical Physics
- 5107 Particle and high energy physics
- 4904 Pure mathematics
- 4902 Mathematical physics
- 0206 Quantum Physics
- 0105 Mathematical Physics
- 0101 Pure Mathematics