## An integral transform related to quantization

Publication
, Journal Article

Daubechies, I; Grossmann, A

Published in: Journal of Mathematical Physics

January 1, 1979

We study in some detail the correspondence between a function f on phase space and the matrix elements (Qf)(a, b) of its quantized Q f between the coherent states |a< and |b<. It is an integral transform: Qf(a, b) = ∫{a, b |v} f(v) dv which resembles in many ways the integral transform of Bargmann. We obtain the matrix elements of Q f between harmonic oscillator states as the Fourier coefficients of f with respect to an explicit orthonormal system. © 1980 American Institute of Physics.

### Duke Scholars

## Published In

Journal of Mathematical Physics

## DOI

## ISSN

0022-2488

## Publication Date

January 1, 1979

## Volume

21

## Issue

8

## Start / End Page

2080 / 2090

## Related Subject Headings

- Mathematical Physics
- 51 Physical sciences
- 49 Mathematical sciences
- 02 Physical Sciences
- 01 Mathematical Sciences

### Citation

APA

Chicago

ICMJE

MLA

NLM

Daubechies, I., & Grossmann, A. (1979). An integral transform related to quantization.

*Journal of Mathematical Physics*,*21*(8), 2080–2090. https://doi.org/10.1063/1.524702Daubechies, I., and A. Grossmann. “An integral transform related to quantization.”

*Journal of Mathematical Physics*21, no. 8 (January 1, 1979): 2080–90. https://doi.org/10.1063/1.524702.Daubechies I, Grossmann A. An integral transform related to quantization. Journal of Mathematical Physics. 1979 Jan 1;21(8):2080–90.

Daubechies, I., and A. Grossmann. “An integral transform related to quantization.”

*Journal of Mathematical Physics*, vol. 21, no. 8, Jan. 1979, pp. 2080–90.*Scopus*, doi:10.1063/1.524702.Daubechies I, Grossmann A. An integral transform related to quantization. Journal of Mathematical Physics. 1979 Jan 1;21(8):2080–2090.

## Published In

Journal of Mathematical Physics

## DOI

## ISSN

0022-2488

## Publication Date

January 1, 1979

## Volume

21

## Issue

8

## Start / End Page

2080 / 2090

## Related Subject Headings

- Mathematical Physics
- 51 Physical sciences
- 49 Mathematical sciences
- 02 Physical Sciences
- 01 Mathematical Sciences