
Super-Tree Random Measures
Publication
, Journal Article
Allouba, H; Durrett, R; Hawkes, J; Perkins, E
Published in: Journal of Theoretical Probability
January 1, 1997
We use supercritical branching processes with random walk steps of geometrically decreasing size to construct random measures. Special cases of our construction give close relatives of the super-(spherically symmetric stable) processes. However, other cases can produce measures with very smooth densities in any dimension.
Duke Scholars
Published In
Journal of Theoretical Probability
DOI
ISSN
0894-9840
Publication Date
January 1, 1997
Volume
10
Issue
3
Start / End Page
773 / 794
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 4904 Pure mathematics
- 0104 Statistics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Allouba, H., Durrett, R., Hawkes, J., & Perkins, E. (1997). Super-Tree Random Measures. Journal of Theoretical Probability, 10(3), 773–794. https://doi.org/10.1023/A:1022666030740
Allouba, H., R. Durrett, J. Hawkes, and E. Perkins. “Super-Tree Random Measures.” Journal of Theoretical Probability 10, no. 3 (January 1, 1997): 773–94. https://doi.org/10.1023/A:1022666030740.
Allouba H, Durrett R, Hawkes J, Perkins E. Super-Tree Random Measures. Journal of Theoretical Probability. 1997 Jan 1;10(3):773–94.
Allouba, H., et al. “Super-Tree Random Measures.” Journal of Theoretical Probability, vol. 10, no. 3, Jan. 1997, pp. 773–94. Scopus, doi:10.1023/A:1022666030740.
Allouba H, Durrett R, Hawkes J, Perkins E. Super-Tree Random Measures. Journal of Theoretical Probability. 1997 Jan 1;10(3):773–794.

Published In
Journal of Theoretical Probability
DOI
ISSN
0894-9840
Publication Date
January 1, 1997
Volume
10
Issue
3
Start / End Page
773 / 794
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 4904 Pure mathematics
- 0104 Statistics
- 0101 Pure Mathematics