Sensitive Detection of Elemental Mercury Vapor by Gold Nanoparticle Decorated Carbon Nanotube Sensors.
Low-cost, low power consumption gas sensors that can detect or quantify various gas analytes are of increasing interest for various applications ranging from mobile health, to environmental exposure assessment and homeland security. In particular miniature gas sensors based on nanomaterials that can be manufactured in the form of sensor arrays present great potential for the development of portable monitoring devices. In this study, we demonstrate that a chemiresistive nanosensor comprised of single walled carbon nanotubes decorated with gold nanoparticles has impressive sensitivity to elemental mercury (Hg) gas concentrations, with a lower detection limit as low as 2 ppb(v). Furthermore, this nanosensor was found to regenerate, though slowly, without any additional recovery steps. Finally, the mercury vapor sensing mechanism allowed for direct investigations into the origin of Surface Enhanced Raman Scattering (SERS) in carbon nanotubes decorated with Au nanoparticles.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Physical Chemistry
- 40 Engineering
- 34 Chemical sciences
- 10 Technology
- 09 Engineering
- 03 Chemical Sciences
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Physical Chemistry
- 40 Engineering
- 34 Chemical sciences
- 10 Technology
- 09 Engineering
- 03 Chemical Sciences