
Bayesian Nonparametric Functional Data Analysis Through Density Estimation.
In many modern experimental settings, observations are obtained in the form of functions, and interest focuses on inferences on a collection of such functions. We propose a hierarchical model that allows us to simultaneously estimate multiple curves nonparametrically by using dependent Dirichlet Process mixtures of Gaussians to characterize the joint distribution of predictors and outcomes. Function estimates are then induced through the conditional distribution of the outcome given the predictors. The resulting approach allows for flexible estimation and clustering, while borrowing information across curves. We also show that the function estimates we obtain are consistent on the space of integrable functions. As an illustration, we consider an application to the analysis of Conductivity and Temperature at Depth data in the north Atlantic.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 3802 Econometrics
- 1403 Econometrics
- 0104 Statistics
- 0103 Numerical and Computational Mathematics
Citation

Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 3802 Econometrics
- 1403 Econometrics
- 0104 Statistics
- 0103 Numerical and Computational Mathematics